《三角形内角和》数学教案

时间:2025-03-31 10:06:42
《三角形内角和》数学教案

《三角形内角和》数学教案

在教学工作者开展教学活动前,编写教案是必不可少的,教案是教材及大纲与课堂教学的纽带和桥梁。我们该怎么去写教案呢?以下是小编收集整理的《三角形内角和》数学教案,希望能够帮助到大家。

《三角形内角和》数学教案1

【教学内容】:人教版第八册第85页例5及“做一做”和练习十四的第9、10、12题。

【课程标准】:认识三角形,通过观察、操作、了解三角形内角和是180度。

【学情分析】:

学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。

【学习目标】:

1、结合具体图形能描述出三角形的内角、内角和的含义。

2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。

3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。

4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。

【评价任务设计】:

1、利用孩子已有经验,通过教师的提问和引导以及学生的直观观察,说出三角形的内角、内角和的含义。达成目标1。

2、在教师的引导下,以游戏的形式学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。达成目标2。

3、在小组合作交流中,通折一折、拼一拼和摆一摆的动手操作、实验、验证并归纳总结出三角形的内角和是180°。达成目标3。

4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。通过“做一做”和习题第9、10、12题达成目标4和目标3。

【重难点】

教学重点:探索和发现三角形的内角和是180°。

教学难点: 充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°

【教学过程】

一、复习准备。

1、三角形按角的不同可以分成哪几类?

2、一个平角是多少度?1个平角等于几个直角?两个三角板上各个角的度数?

二、探究新知

(一)创设情境,生成问题,认识三角形的内角及内角和

(播放课件)在图形王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“你虽然有一个钝角,可其它两个角都很小。但是我的三个角都不是很小。我的内角和比你大”。直角三角形说:“别争了,三角形的内角和是180°,我们的内角和是一样大的。”

师:动画片看完了,请大家想一想,什么是三角形的内角和?

师引导学生说出三角形三个内角的度数和叫做三角形的内角和。

多媒体展示:三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角(板书:内角),这三个内角的度数的和就叫做三角形的内角和。

(达成目标1:利用多媒体播放动画和孩子已有的经验,通过教师的提问和引导,学生说出什么叫三角形的内角及内角和达成目标1。多媒体创设的情景也为目标二打好铺垫)

(二)、引导猜测三角形的内角和是180度

师:在课件展示的直角三角形、钝角三角形、锐角三角形的对话中,你赞同谁的观点?

预设:学生回答直角三角形。

师:你为什么这么认为呢?

生:我是想三角板上三个角的度数是90度、45度、45度加起来是180度,90度、60度、30度加起来也是180度。

(达成目标2:激发引导学生运用已有经验猜三角形的内角和而不是盲目猜,激起学生的疑问和好奇心,这样在教师的引导下,学生通过猜测三角形的内角和是多少度,然后通过计算说出三角形的内角和是180°的结论。)

(三)、验证三角形的内角和是180度

1.确定研究范围

师:研究三角形的内角和,是不是应该包括所有的三角形?只研究这一个行不行?(不行)那就随便画,挨个研究吧。(学生反对)那该怎样去验证呢?请你们想个办法吧!

师:分类验证是科学验证的一种好方法,下面我们就用分类验证的方法来验证一下,看看三角形的内角和是不是180°?

2.操作验证

教师让每个学习小组拿出课前制作的各种各样的三角形,先找到三个内角,在每个内角标上序号1、2、3。然后请任意用一个三角形,想办法验证我们的猜想。如果有困难,可以启用老师提供的“智慧锦囊”或者寻求同学的帮助。

智慧锦囊:

(1)要知道三个内角的和,只要知道三个角分别是多少度就可以了,你觉得哪个工具可以测出角的度数?试一试。

(2)180°的角是个特殊的角,它是个什么角?你能想办法将这三个内角转化成这样的角吗?

3.汇报交流

师:谁来汇报你的验证结果?

(1)测算法

师小结:用量的方法验证既然有误差、不准,结论就难以让人信服,那有没有办法更好地验证我们的猜测呢?谁还有别的方法?

(2)剪拼法

(3)折拼法

师小结:用拼和折的方法都能将三角形的三个内角转化成一个平角,从而借助我们学过的平角知识证明三角形的内角和确实是180°,你们真会动脑筋!

(4)推算法

①把一个长方形沿对角线分成两个完全一样的直角三角形。因为长方形的内角和是360°,所以一个直角三角形的内角和等于180°。(课件演示过程)

师:直角三角形的内角和已经证明了是180°,现在我们只要能证明:锐角三角形和钝角三角形的内角和也是180°就可以了。

课件演示

②一个锐角三角形,从顶点往下画一条垂线,将三角形分为两个直角三角形,因为我们已经知道直角三角形的内角和是180°,所以两个直角三角形的度数和就是360°,减去两个直角的和180°,就是要证明的三角形内角和,肯定是180°。

4.总结提炼

师:孩子们,刚才我们通过“量——拼——折——推”的方法分类验证了三角形的内角和是( )度?

现在可以下结论了吗?

(板书:三角形三个内角和等于180°。)

师:那在 ……此处隐藏7676个字……课:

一、教材分析

“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

二、教学目标

1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

三、教学重难点

教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

四、学情分析

通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

五、教学法分析

本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。

六、课前准备

1、教师准备:多媒体课件、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

七、教学过程

(一)、创设情境,激趣导入

导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。

(二)、自主探究、合作交流

1、探索特殊三角形内角和

拿出自己的一副三角板,同桌之间互相说一说各个角的度数。

三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°

90°+45°+45°=180°

从刚才两个三角形内角和的计算中,你发现了什么?

2、探索一般三角形的内角和

一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。

3、汇报交流

请小组代表汇报方法。

1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)

没有统一的结果,有没有其他方法?

2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)

3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)

4)教师课件验证结果。

请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?

学生回答后教师板书:三角形的内角和是180°

为什么有的小组用测量的方法不能得到180°?(误差)

4、验证深化

质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)

谁能说一说不能画出有两个直角的三角形的原因?

(三)、应用规律,解决问题:

揭示规律后,学生要掌握知识,就要通过解答实际问题。

1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。

第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)

第二关,提高练习,

①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。

让学生灵活应用隐含条件来解决问题,进一步提高能力。

2、小组合作练习,完成相应做一做。

(四)、课堂总结,效果检测。

一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。

(五)作业课下继续探究三角形,看你有什么新发现。

八、板书设计

通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!

《三角形内角和》数学教案9

学习目标:

(1) 知识与技能 :

掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。

(2) 过程与方法 :

通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。

通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。

(3)情感态度与价值观:

通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。

一.自主预习

二.回顾课本

1、三角形的内角和是多少度?你是怎样知道的?

2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。

3、回忆证明一个命题的步骤

①画图

②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。

③分析、探究证明方法。

4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?

①平角,②两平行线间的同旁内角。

5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?

① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。

② 如图1,延长BC,过C作CE∥AB

③ 如图2,过A作DE∥AB

④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。

三、巩固练习

四、学习小结:

(回顾一下这一节所学的,看看你学会了吗?)

五、达标检测:

六、布置作业

《《三角形内角和》数学教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式