比的应用教案

时间:2025-04-11 11:18:00
比的应用教案合集五篇

比的应用教案合集五篇

作为一名无私奉献的老师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么什么样的教案才是好的呢?以下是小编精心整理的比的应用教案5篇,欢迎阅读与收藏。

比的应用教案 篇1

教学内容:

小学数学人教版第十一册第52页~53页的内容,练习十三的第1~4题。

教学目标:

1、使学生理解按比例分配的意义。

2、使学生理解按比例分配应用题的数量关系,并会解答此类应用题。

3、使学生能运用所学知识来解决生活中的一些简单问题,体会数学与生活的密切联系。

教学重点:掌握按比例分配应用题的解题方法。

教学难点:按比例分配应用题的实际应用。

教学准备:自制多媒体课件。实物投影仪。

教学过程:

一、复习引入:

1、问:我班男女生人数各是多少?你能根据我班男女生人数用比的知识和分数的知识来说一句话吗?

学生汇报:

(1)男生人数是女生人数的( ), 男生人数和女生人数的比是( )

(2)女生人数是男生人数的( ),女生人数和男生人数的比是( )

(3)男生人数占全班人数的( ),男生人数和全班人数的比是( )

(4)全班人数是男生人数的( ),全班人数和男生人数的比是( )

(5)女生人数占全班人数的( ),女生人数和全班人数的比是( )

(6)全班人数是女生人数的( ),全班人数和女生人数的比是( )

2、口答应用题

六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?

口答:100÷2=50(平方米)

提问:这是一道分配问题,分谁?(100平方米)

怎么分?(平均分)

六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?这样分还是平均分吗?

在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们研究按比例分配问题。(板书:按比例分配)

指出:按比例分配就是把一个数量按照一定的比来分配。

二、讲授新课

1、把复习题2增加条件“如果按3 :2分配,两个班的保洁区各是多少平方米?”

1、思考:由“如果按3 :2分配”这句话你可以联想到什么?(小组讨论)

小组汇报:

(1)六年级的保洁区面积是二年级的 倍

(2)二年级的保洁区面积是六年级的

(3)六年级的保洁区面积占总面积的

(4)二年级的保洁区面积占总面积的

……

3、课件演示

4、尝试解答:用你学过的知识解答例题,并说一说怎么想的?(请学生板演)

方法一、3+2=5 100÷5=20(平方米)

20×3=60(平方米) 20×2=40(平方米)

方法二、3+2=5 100× =60(平方米)

100×=40(平方米)

……

5、这道题做得对不对呢?我们怎么检验?

①两个班级的面积相加,是否等于原来的总面积。

②把六年级和二年级的面积化成比的形式,化简后的结果是不是等于3 :2

……

6、练习:

如果你来分配这100平方米的保管区给六(1)班和六(2)班你准备按这样的比来分配,并把两个班保管区的面积算出来。

学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

7、出示:学校新买来315本新书,要分配给六年级三个班,如果你是图书管理员,怎样分配才合理呢?

(1)小组讨论,提出各种各样的'分配方案,最后统一到按照各班人数进行分配比较合理。

(2)增加条件:六(1)班34人,六(2)班36人,六(3)班35人。

(3)问:3154本书按照人数分配,就是按照怎样的比来分配呢?

(4)学生独立解答。

(5)学生汇报。实物投影出示学生的解题过程,并让学生说说思考过程。

8、小结:观察我们今天学习的按比例应用题有什么特点?

三、开放运用,体验成功

小明九月份共用去零花钱30元,具体用途及分配情况见下表:

零花钱30



买学习用品



买零食



玩游戏机



1



3



6









1.你能算出小明的各项支出是多少元吗?

2.看了这张表,你有什么想法?如果是你,你会怎样安排这30元零花钱?能用表格展示出来吗?

1、反馈。实物投影出示学生的表格,并让学生说说理由和计算钱数的方法。

四、总结:

今天的学习你有什么收获呢?

五、布置作业:练习十三的第1~4题。

比的应用教案 篇2

教材分析:这部分内容是在学生学习了比与分数的联系,已掌握简单分数乘、除法应用题数量关系的基础上,把比的知识应用于解决相关的实际问题的一个课例,掌握了按比例分配的解题方法,不仅能有效地解决生活、工作中把一个数量按照一定的比进行分配的问题,也为以后学习比例比例尺奠定了基础。

学情分析:对于按比例分配问题学生在以往的学习生活过程中曾经遇到过,甚至解决过,每个学生都有一定体悟和经验,但是对于这种分配方法没有总结和比较过,没有一个系统的思维方式。通过今天的学习,将学生的无序思维有序化、数学化、系统化,总结并内化成学生的一个巩固的规范的分配方法。

教学过程

活动一

1、课前调查

奶茶中牛奶和红茶的比是2∶9。从这句话中你看出了什么?

牛奶是红茶的2/9,红茶是牛奶的9/2,红茶是奶茶的/9/11,牛奶是奶茶的2/11。

2、实际操作

要配置220毫升奶茶,需要多少牛奶和多少红茶?

学生讨论,研究不同算法。

解法一:220/(2+9)=20ml,20*2=40ml,20*9=180ml

解法二:2+9=11220*(9/11)=180ml220*(2/11)=40ml

讨论出几种就是集中不强求,比较后找出自己认为的最简单的解法。

学生配置奶茶,共同品尝。

活动二

1、教学例2

书上例2,列式计算

2、生活中常常要把一个数量按一定的比来进行分配,这节课我们来研究比的应用。(板书:比的应用)接下来希望大家能够学以致用,来解决更多的实际问题。

活动三:

1、请帮忙配糖:

一种什锦糖是由奶糖、水果糖和酥糖按3:5:2混合成的,要配制这样的什锦糖50千克,需要奶糖、水果糖、酥糖各多少千克?(鼓励求异思维)

3、帮刘爷爷收电费

刘爷爷管收四家电费,四家合用一个总电表,四月份供付电费83.2元,按每家分电表的度数分摊电费,每家各应收多少钱?

住户王家张家赵家李家

分电表度数40382953

3、陆老师和高老师合租一套房,高老师住30平方米的房间,陆老师住20平方米的房间,客厅厨房等公用部分的面积是30平方米,每月房租1000元,房租怎样分配才合理?

4、总结全课

比的应用广泛,在工业、农业、医药......用途很广,同学们今后要留心观察生活,在实际生活中运用所学的知识来解决问题。

比的应用教案 篇3

教学内容:

冀教版小学数学六年级上二单元第5课时 (比的应用)

教学目标:

1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法;

2、培养学生应用所学数学知识解决实际问题的能力,使学生真正成为课堂的主人;

3、通过实例使学生感受到数学来源于生活,生活离不开数学。

教学重点:

1、正确理解按比例分配的意义。

2、掌握按比例分配应用题的特征和解题方法。

教学难点:

能正确、熟练地解答按比例分配的实际问题。

课前准备:

布置学生预习

教学过程:

一、创设情境

1、回顾以前学习过的平均分,由平均分的“公平”引出今天的题目如果还按照平均分,反而不公平。(两人共同合作劳动,完成份额不同,所得分配问题)

2、小结:刚才两位如果劳动资额相同,所以他们获得的报酬要按1:1来分配,这种分配方式也就叫平均分。如果完成劳动份额不相同,所以他们获得的报酬要按1:1来分配就不公平,怎么办?

(组织交流)

师:这里的报酬要完成份额的比进行分配比较合理。像这样,把一个数量按一定的比来进行分配,通常叫做按比例分配。(揭示课题:按比例分配)

二、初步感知

1、想一想,两位应该按怎样的比来分配劳动所得?(板书:按完成的比3:2进行分配)

2、谁能用自己的语言说说3:2的具体含义。

3、谁能用算式表示两位各应分得多少元?

4、小结:通过刚才的生活实例,你认识了什么?(什么是按比例分配)

三、自主探究,合作研习

1、谈话:其实,在生活中,像这样的按比例分配的例子是很多的,你有没有遇到过?说一个给大家听听,今天,我们学习第19页内容,由于我们昨天已经布置了预习,所以我们按以下提纲进行交流。

2、 此时用PPT出示“学习内容”“学习目标”和“导学提纲”

学习内容:冀教版小学数学六年级上册第19页。

学习目标

1、认识按比例分配的实际问题,掌握这类实际问题的解答方法。

2、认识连比,理解三个数量连比的意义。

导学提纲

1、例1中“紫色与红色方块数的比是3:5”的含义是什么?

2、与同学说说例题中每种方法的解题思路。

3、你能画图理解这两种解题方法与同学交流吗?

4、你怎样理解例2“按照2:3:5配置混凝土”这句话的含义?

5、“练一练”第3题是把1200千克培养料按怎样的比来分配?

学生根据导学提纲进行下列活动,教师巡视,深入各小组交流,关注学困生。

(1)独立思考,尝试解答。

(2)小组交流,说说想法。

(3)组织交流,形成思路。

(4)选好内容,进行预展示。

四、集中展示

1、例1中“紫色与红色块数的比是3:5”的含义是什么?

预设:(1)这里的3:5,也就是在8个方块,紫色占3份,红色占5份,一共有8份,紫色占了方块总数的83,红色占方块总数的85。求紫色(茄子)有多少平方米,就是求984平方米的83是多少,求红色(西红柿)有多少平方米,就是求984的85是多少。

(2)把984平方米平均分成5份,3份是茄子,5份西红柿。总份数3+5=8,

茄子为984÷8×3=369(平方米),西红柿为984÷8×5=615(平方米)。

2、展示例2的解题思路及方法……

3、展示“练一练3”的解题方法

小结:通过刚才的生活实例,你又有什么新的收获?你觉得按比例分配应用题的解答关键是什么?

预设:(1)关键是根据已知的比表示的份数关系,找出各种数量占总数量的几分之几,也就是把比转化成分数,再按求一个数的几分之几是多少乘法计算。(2)根据份数先求总份数,再求每份数,最后求几份数。

五、反馈检测

1、本次校运动会上共有644人报名参加各项目比赛,其中男女运动员人数的比是4 :3,你知道参加各项比赛的女运动员有多少名吗?

2、低年级老师用一根长40厘米的铁丝围成一个三条边的比是4 : 7 : 9的三角形,请你帮低年级老师算算三条边的长度各是多少?

3、六(1)班有学生35人,六(2)班有学生36人,六(3)班有学生34人。在第十二届田径运动会入场式上需要制作210面彩旗,按照六年级各班学生人数的比,六年级三个班各需要做多少面彩旗?

4、一个标准的篮球场是长方形,它的周长是86米。长与宽的比是28:15。求这个标准的篮球场的面积。

六、课堂小结

学了这节课,你有什么收获?

七、课堂作业

20页,1、2、4、5。

板书设计:

按比例分配的解题方法

一要知道分配的数量,二要知道按怎样的比分配

比的应用教案 篇4

教学目标:

(1)知识目标:使学生理解按比例分配的意义。

(2)能力目标:使学生灵活掌握按比例分配应用题的数量关系和解答方法。

(3)情感目标:在教学中渗透事物是相互联系的辩证唯物主义思想。

教学重点:分析理解按比例分配应用题的数量关系。

教学难点:掌握按比例分配应用题的解答方法。

教具准备:多媒体课件

教学过程:

一、学前准备

1、一个农场计划在100公顷的地里播种60公顷的大豆和40公顷玉米。大豆和玉米的播种面积各占这块地的几分之几?大豆和玉米播种面积的比是多少?

60÷100=3/5

40÷100=2/5

这里的3/5和2/5是什么意思?

2、60:40=3:2

你发现了什么?

二、探究新知

1、导入新课

在日常生活中,我们有时需要把一些数量按照一定的比来分配,你能举出这样的例子吗?

2、教学例题2

一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3:2,两种作物各播种多少公顷?

(1) 学生独立思考,相互说说:要分配什么?3:2是什么意思?

(2) 探究问题解决的方法

(3) 交流

(4) 用分数怎么解答?

总面积平均分成的份数:3+2=5

播种大豆的面积:100×3/5=60(公顷)

播种玉米的面积:100×2/5=40(公顷)

(5) 用归一方法怎么解答?

3、归纳小结:按比例分配的应用题有什么特点?怎样解答?

4、学习例题3

(1) 小组尝试解答检验

(2) 全班交流、反馈

三个班的总人数:47+45+48=140(人)

一班应栽的棵数:280×()=( )棵

二班应栽的棵数:280×()=( )棵

三班应栽的棵数:280×()=( )棵

(3) 例题2和例题3有什么相同点和不同点

三、巩固练习与检测

1、水果店运来桔子和梨共840千克,梨和桔子的重量的比是3:2,桔子和梨各重多少千克?

2、一个三角形的三个内角的度数比是2:3:7,求这个三角形的各个内角的度数。

3、教材53页的2、3题

四、小结(略)

五、作业:练习十三的第一、二、五题。

比的应用教案 篇5

教学目标

使学生进一步认识按比例分配应用维他命和按比例分配应用题的特征和解题思路,能应用比的知识解答相关应用题。

进一步提高学生分析、推理等思维能力和应用比的知识解决问题的能力。

教学重难点

应用比的知识解答相关应用题。

教学准备

教学过程设计

教学内容

师生活动

备注

  一、复习

二、应用题练习

三、

四、作业

1、说出下面每个比表示的具体含义。

苹果和梨的重量比是2∶3;

电视机和收音机的台数比是5∶2;

学校老师与学生的人数比是1∶25。

2、口答

练习136;说说是怎样想的?

3、揭示课题

1、练习137

找一找相同点和不同点。

这两道题里的40棵各与比里哪个份数相对应?

这两道题,哪一道是按比例分配问题,哪一道不是?为什么?

按比和分数的关系想一想,这两道题会解答吗?

上下练习;

两题在解答时有什么不同?为什么(1)用40×3/5+3,而(2)用40×3/5来解答?

2、题组练习

(1)学校饲养组养的白兔和黑兔只数的比是5∶4。白兔有15只,黑兔有多少只?

(2)学校饲养组养的白兔和黑兔只数的比是5∶4。黑兔有12只,白兔有多少只?

说说有什么相同和不同的地方?

这两道题与按比例分配问题相同吗?有什么不同?

3、补充练习

出示:男生人数和女生人数的比是3∶4。

,女生有多少人?

1)学生说说上面比的具体含义。

2)口头补充成按比例分配应用题,并口头列式解答;

3)口头补充成已知一个数量,求另一个数量的应用题,并口头列式。

练习139

课后感受

同学们能应用比的知识解答相关应用题。

《比的应用教案合集五篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式